Extensions 1→N→G→Q→1 with N=C22 and Q=C3xC62

Direct product G=NxQ with N=C22 and Q=C3xC62
dρLabelID
C2xC63432C2xC6^3432,775

Semidirect products G=N:Q with N=C22 and Q=C3xC62
extensionφ:Q→Aut NdρLabelID
C22:(C3xC62) = A4xC62φ: C3xC62/C62C3 ⊆ Aut C22108C2^2:(C3xC6^2)432,770
C22:2(C3xC62) = D4xC32xC6φ: C3xC62/C32xC6C2 ⊆ Aut C22216C2^2:2(C3xC6^2)432,731

Non-split extensions G=N.Q with N=C22 and Q=C3xC62
extensionφ:Q→Aut NdρLabelID
C22.(C3xC62) = C4oD4xC33φ: C3xC62/C32xC6C2 ⊆ Aut C22216C2^2.(C3xC6^2)432,733
C22.2(C3xC62) = C22:C4xC33central extension (φ=1)216C2^2.2(C3xC6^2)432,513
C22.3(C3xC62) = C4:C4xC33central extension (φ=1)432C2^2.3(C3xC6^2)432,514
C22.4(C3xC62) = Q8xC32xC6central extension (φ=1)432C2^2.4(C3xC6^2)432,732

׿
x
:
Z
F
o
wr
Q
<